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Recap: Introduction to Convex Optimization

where C € RP*" and g : R" — R™.
Main point: Easy to solve if f, g convex and twice differentiable.

MPC problems with these properties are common:

e Linear dynamics

« Convex cost and constraints (e.g., quadratic, linear, sum of norms, etc)
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Interior-point methods

e Solve linear system to compute search direction, take step, repeat:

(V2£(2) + kV?P(2)) Az = —VI(2) — kVP(2)
e General form of linear system more complex, but same idea
e Generally have to iterate about 10 — 30 times

e Computation time determined by how long it takes to solve linear equation
— A *lot* faster if structure of problem is exploited to speed solution
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MPC can be used for Fast Systems

Time per iteration for MPC problem on desktop PC.
Total time will be ~ 10x slower.
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Outline

1. Objectives of Constrained Control

Introduction to Constrained Systems 4-5 Model Predictive Control ME-425



Constrained Control

xT = f(x, u) (x,u)eX, U

Design control law u = k(x) such that the system:

Satifies constraints : {x;} C X, {y;} C U
Is stable: limj_ oo Xi =0

Optimizes “performance”

=

Maximizes the set {xp | Conditions 1-3 are met }

This lecture is about how to ensure #1

(Remaining lectures cover 2-4)
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Limitations of Linear Controllers

1r System:
1 1 1
0.8} + _
X {o 1] X+ [0.5} v
0.6 Constraints:
><N
0.4t Xo={x|lIxll« <5}
U:={ulllufls <1}
0.2t .
Consider an LQR controller,
with Q=1, R=1.

00 0.2 0.4 0.6 0.8 ]
X

Does linear control work?
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Limitations of Linear Controllers

5 System:

xT = L1 X + ! u
Input constraints violated 01 0.5
[|Kx]| > 1
Constraints:

Xi={x[lIxllc <5}
= < ]_
Input constraints violated v ffleloe =13
K 1 ;
lIkx[| > Consider an LQR controller,

with Q =1/, R=1.

25 0 5

Does linear control work?
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Limitations of Linear Controllers

5 System:
Constraints violated later
xT = L1 X + ! u
Input constraints violated 0 1 0.5
[|Kx]| > 1
Linear. Constraints:
SNoF controller
works

Xo={x[lIxlle <5}

U:={ullullc <1}

Input constraints violated
|Kx]| > 1

Consider an LQR controller,
with @ =1/, R=1.

Constraints violated later
_5 L
-5 0 5
X1
Does linear control work?

Yes, but the region where it works is very small
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Limitations of Linear Controllers
5

System:
Best any nonlinear
controller can do

o = 1 1 .t 1 J
\ 01 0.5
Linear. Constraints:
< 0f controller
works Xo={x|lIx[l« <5}
\ U= (o] fulle < 1)

Consider an LQR controller,
with @ =1/, R=1.

25 0 5
X1

Does linear control work?

Yes, but the region where it works is very small

Use nonlinear control (MPC) to increase the region of attraction
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Lecture Take Homes

Two concepts this lecture:
e Invariance
— Region in which an autonomous system will satisfy the constraints for
all time
o Controlled invariance

— Region for which there exists a controller so that the system satisfies
the constraints for all time

And some practical computation:
e How to compute these for some important problems

Introduction to Constrained Systems 4-11 Model Predictive Control ME-425



Invariance: Which states are “good’?

The initial state is in the constraints. Is the next one?

0.5r

_0.5,

Introduction to Constrained Systems

System:

where w = 10, ( = 0.01,
sampled at 10Hz.
Constraints:
-5<x <1
Xi=<{x|-1<x<1
—5<x+x<1
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Invariance: Which states are “good’?

The initial state is in the constraints. Is the next one?

Yup, next one?

1+

_0.5,
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Invariance: Which states are “good’?

The initial state is in the constraints. Is the next one?
Yup, next one? Yup... Yup... Uh oh

System:
l,
_ 2
5 2Cw w
0.5¢ 1 0
N where w = 10, ( = 0.01,
or sampled at 10Hz.
Constraints:
_0.5,
—5<x <1
Ll Xi={x|-1<x<1
6 -4 -2 0 2 4 6 —5<Xx+x <1

1
Look an infinite distance into the future to determine if the trajectory
beginning at the current state always remains in the constraints.
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Controlled Invariance: Does a good input exist?

The initial state is in the constraints. Can we choose the next one to be?

1t 4
r sin(0.3)  cos(0.3)
xT =09 [— cos(0.3) sin(0.3) | *
0.5/
1 2
+0.25 [3 4} u
0,
Constraints:
-0.5
lulle <0.1
-1f lIx]loo <1
15 -1 -05 0 05 1 15 11 1 xlle <1

X

We can choose from a set of inputs = Set of possible next states
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Controlled Invariance: Does a good input exist?
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Controlled Invariance: Does a good input exist?

The initial state is in the constraints. Can we choose the next one to be?

1t 4
r sin(0.3)  cos(0.3)
xT =09 [— cos(0.3) sin(0.3) | *
0.5/
1 2
+0.25 [3 4} u
0,
Constraints:
-0.5
lulle <0.1
-1f lIx]loo <1
15 -1 -05 0 05 1 15 11 1 xlle <1

X

We can choose from a set of inputs = Set of possible next states

Controlled invariance: Will there always exist a valid input that will maintain
constraints?
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Outline

2. Invariance
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Invariance

Constraint satisfaction, for an autonemous system x™ = f(x), or closed-loop
system x* = f(x, k(x)) for a given controller k.
Positive Invariant set

A set O is said to be a positive invariant set for the autonomous system
Xip1 = f(x) if

x €0 = x€0, Vie{0,1,...}

The invariant set provides a set of initial states from which the trajectory will
never violate the system constraints.

Maximal Positive Invariant Set O,

The set O, C X is the maximal invariant set with respect to X if 0 € O,
O is invariant and O, contains all invariant sets that contain the origin.

The maximal invariant set is the set of all states for which the system will
remain feasible if it starts in O.
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Pre-Sets
Pre Set

Given a set S and the dynamic system xT = f(x), the pre-set of S is the set
of states that evolve into the target set S in one time step:

pre(S) :={x |f(x) € S}
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Pre-Set Example : Pendulum

2r Pendulum:
1.5}
+ X2
3 XD EXA [—9.85inx1—x2]
< 08 (Discretized with forward Euler
s o at 1Hz)
()
> -0.5f Target set:
_l,
T={xllxl2<1}
-1.5f
) -1 0 1 2

Position X

Which states will be in the target set at the next point in time?
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Pre-Set Example : Pendulum

2y, Pendulum:
1.5/
+_ X2
i X%X XD EXA {—9.85inxl —xz]
el % (Discretized with forward Euler
s o, é at 1Hz)
2 05 Target set:
-
/ T o= {x|lxllo < 1}
-1.5¢
=) 2

0
Position X,
Which states will be in the target set at the next point in time?

Consider the phase diagram.
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Pre-Set Example : Pendulum

2r Pendulum:
1.5}
+ X2
3 XD EXA [—9.85inx1—x2]
< 08 (Discretized with forward Euler
5 o at 1Hz)
G
> -0.5f Target set:
_l,
T={xllxl2<1}
-1.5f
) -1 0 1 2

Position X
Which states will be in the target set at the next point in time?
Consider the phase diagram.
Pre-set is those states that will be in T in one time-step

Extremely difficult to compute, except in special cases (next lecture).
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Invariant Set Conditions
Theorem: Geometric condition for invariance

A set O is a positive invariant set if and only if

O C pre(0)

We prove the contrapositive for both the necessary and sufficient conditions.

Necessary If O € pre(O), then 3x € O such that X ¢ pre(O). From the
definition of pre(Q), f(X) ¢ O and thus O is not a positive
invariant set.

Sufficient If O is not a positive invariant set, then dx € O such that

f(X) ¢ O. This implies that X € O and X ¢ pre(O) and thus
O ¢ pre(0).

Note that O C pre(O) < pre(O)N O = 0O

Introduction to Constrained Systems 4-28 Model Predictive Control ME-425




Computing Invariant Sets

Conceptual Algorithm to Compute Invariant Set

Input: f, X
Output: O

Qo +— X
loop
Qi+1 — pre(Q,-) N Q;
if Q/+1 = Q; then
return O, = Q;
end if
end loop

The algorithm generates the set sequence {Q,} satisfying Q;.1 C Q; for all
i € N and it terminates when ;1 = €, so that €, is the maximal positive
invariant set Oy, for x* = f(x).
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Computing Invariant Sets

1.5r
Input: f, X
1t Output: O
0.5f Qo +— X
loop
& 0r Qj+1 — pre(Q,-) nQ,;
if Qi+1 = Q, then
-05 return O, =
4l end if
end loop
-1.5 5 )E‘) 5
1
System:
xT = E ﬂ X+ {0?5} u [__150} < x< {150] —0.1<u<0.1

Where u = Kx, with K the optimal LQR controller for Q =/, R = 90.
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Computing Invariant Sets

1.5¢
Input: f, X
1t Output: O
0.5f \ Qo+ X
loop
& 0r Q/+1 — pre(Q,-) nQ,;

if Qi+1 = Q, then

—0.51 return O, =
4l end if
end loop
5

-1.5

-5 0

X1
System:
1 1 1 -5 5
+ = p—
T {0 1} X {0.5} ! [_10} Sxs LO] 01<u<01

Where u = Kx, with K the optimal LQR controller for Q =/, R = 90.
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Computing Invariant Sets

1.5r
Input: f, X
1t Output: O
Q
1
0.5f Qo +— X
loop
NOof Qir1 « pre(Q2)NQ;
if Qi+1 = Q, then
-05 return O, =
4l end if
end loop
-15 s o s
Xl
System:
11 1 -5 5
+ = <x< - <u<
X {O JX-I— {0_5} u [_10} <x< LO] 0.1<u<0.1

Where u = Kx, with K the optimal LQR controller for Q =/, R = 90.
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Computing Invariant Sets

1.5r
Input: f, X
1t Output: O
Q
2
0.5f Qo +— X
loop
NOof Qir1 « pre(Q2)NQ;
if Qi+1 = Q, then
-05 return O, =
4l end if
end loop
-15 s o s
Xl
System:
11 1 -5 5
+ = <x< - <u<
X {O JX-I— {0_5} u [_10} <x< LO] 0.1<u<0.1

Where u = Kx, with K the optimal LQR controller for Q =/, R = 90.
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Computing Invariant Sets

1.5r
Input: f, X
1t Output: O
Q
3
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Computing Invariant Sets

1.5r
Input: f, X
1t Output: O
Q,
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loop
& 0r Qj+1 — pre(Q,-) nQ,;
if Qi+1 = Q, then
-05 return O, =
4l end if
end loop
-1.5 5 )E‘) 5
1
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Computing Invariant Sets

1.5r
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Q
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Computing Invariant Sets

1.5r
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Computing Invariant Sets

1.5r
Input: f, X
1t Output: O
Q
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Computing Invariant Sets

1.5¢
Input: f, X
1t Q, QOutput: O
0.5f Qo +— X
loop
& 0r Qj+1 — pre(Q,-) nQ,;
if Qi+1 = Q, then
-05 return O, =
4l end if
end loop
-1.5 5 )é) 5
1
System:
xT = E ﬂ X+ {0?5} u [__150} < x< {150] —0.1<u<0.1

Where u = Kx, with K the optimal LQR controller for Q =/, R = 90.
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3. Controlled Invariance
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Controlled Invariance
Control Invariant Set
A set C C X is said to be a control invariant set if

x; €C = 3Fu; € Usuch that f(x;,u) €C forall i e Nt

Defines the states for which there exists a controller that will satisfy
constraints for all time.

Maximal Control Invariant Set C

The set Cy Is said to be the maximal control invariant set for the system
xT = f(x, u) subject to the constraints (x, u) € X x U if it is control invariant
and contains all control invariant sets contained in X.
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Conceptual Calculation of Control Invariant Sets

Concept of a pre-set extends to svstems with exodenous inputs

pre(S) :={x |JueUst. f(x,u)e S}

o ol L L lle £ + 1 : L i+

A set C is a control invariant set if and only if C C pre(C)

s a result. the same conceptual alaorithm can be used:

Qo +— X
loop

Qi1 < pre(2;) N Q;

if Q1 =, then

return C,, = Q;

end if

end loop

However, it is now much harder to compute the pre-set!
(Will go through details for linear systems / constraints in next lecture)
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Computing Control Invariant Sets

107 System:

1 1 1

+ _
5t X = [0 1] X+ [0.5} v
[ )
Constraints:
o~ or

IX]loe <5
o luloo <1
9 5 0 5 10

1
An entire set of states can map into each point
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Computing Control Invariant Sets

101 Algorithm:
5 QO +— X
e loop
Qi1 < pre(Q) NQ;
~ o of if Q11 =, then
return C,, = Q;
end if
-Sr end loop
9 5 0 5 10
X

1
An entire set of states can map into each point
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Computing Control Invariant Sets

107 Algorithm:
5} k QO +— X
loop
0 Qi1 < pre(Q) NQ;
o~ 0, 1 If QH,]_ == Q,’ then
return C,, = Q;
end if
-5- end loop
9 5 0 5 10

An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute
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Computing Control Invariant Sets

107 Algorithm:
5} k QO +— X
loop
o Qi1 < pre(Q) NQ;
o~ 0, 2 If QH,]_ == Q,’ then
return C,, = Q;
end if
-5- end loop
9 5 0 5 10

X
1
An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute
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Computing Control Invariant Sets

107 Algorithm:
5 k QO +— X
loop
o~ 0, 6 If QH,]_ == Q,‘ then
\ return Coo = Qf
end if
-5- end loop
9 5 0 5 10

1
An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute
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Computing Control Invariant Sets

107 Algorithm:
5 k QO +— X
loop
\ Q,‘+1 — pre(Q,-) nQ;
o~ 0, *° If QH,]_ == Q,’ then
\ return Coo = Q;
end if
-5- end loop
9 5 0 5 10

An entire set of states can map into each point
The pre-set is a lot larger, but much more difficult to compute

The maximum control invariant set is the best any controller can do
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Control Invariant Set = Control Law

Let C be a control invariant set for the system x™ = f(x, u).

A control law k(x) will guarantee that the system x™ = f(x, k(x)) will satisfy
the constraints for all time if:

f(x,k(x))e C forallxe C

We can use this fact to synthesize a control law from a control invariant set
by solving an optimization problem:

k(x) :=argmin{g(x, u) | f(x,u) € C}

where g is any function (including g(x, u) = 0).

This doesn't ensure that the system will converge, but it will satisfy
constraints.
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Relation to MPC

e A control invariant set is a powerful object

e If one can compute one, it provides a direct method for synthesizing a
control law that will satisfy constraints

e The maximal control invariant set is the best any controller can do!!!

So why don't we always compute them!?

Introduction to Constrained Systems 4-50 Model Predictive Control ME-425



Relation to MPC

e A control invariant set is a powerful object

e If one can compute one, it provides a direct method for synthesizing a
control law that will satisfy constraints

e The maximal control invariant set is the best any controller can do!!!

So why don't we always compute them!?

We can't...

e Constrained linear systems : Often too complex

o (Constrained) nonlinear system : (Almost) always too complex
What is MPC?

¢ A method of implicitly describing a control invariant set such that it's easy
to represent and compute!
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4. Polytopes and Polytopic Computation
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Computing Invariant Sets

Conceptual Algorithm to Compute Invariant Set

Qo +— X
loop
Q/+1 — pI’E(Q,') N Q;
if Q;11 =, then
return O, = Q;
end if
end loop

Requirements:

o Represent set ; (Polytopes)
e Intersection
e Pre-set computation

o Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Polyhedra

Polyhedron

P:={x|a/x<b, i=1,..., n}

A polytope is a bounded polyhedron.

A polyhedron is the intersection of a finite number of halfspaces.

Often written as P := {x | Ax < b}, for matrix A € R™" and b € R™, where

the inequality is understood row-wise.

ag
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Convex hull
Convex hull

For any subset S of R?, the convex hull conv (S) of S is the intersection of all
convex sets containing S. Since the intersection of two convex sets is convex,
it is the smallest convex set containing S.

Proposition: Convex hull

The convex hull of a set S CR% is
Given a set of points {vi,..., vk} in RY their convex hull is

x=Y_Avi, A >0, ZA,-_lw_l,...,k}

conv({vi, ..., w}) = {x
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Examples of convex hulls

2D convex hull 3D convex hull
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Polytopes: Representations

Theorem: Minkowski-Weyl Theorem

For P C RY, the following statements are equivalent:

e P is a polytope, i.e., P is bounded and there exist A € R”™*9 and b € R™
such that P = {x |Ax < b}

e P is finitely generated, i.e., there exist a finite set of vectors {v;} such
that P = conv ({1, ..., Vs})

P={x|Ax < b} P = conv({v, ..., Vs})
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Most Common Polytopic Constraints
xt = Ax+ Bu y = Cx

Suppose we have the following input and output constraints:

Uow < U < Upigh

Yiow <Y < Yhigh

Recalling that y = Cx, this is equivalent to:

0 -/ —Ulow
0 / X Uhigh
<
-C 0 <u> = | —Viow
c 0 Yhigh
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Polytopes in MPC

Input saturation Magnitude constraints
up < u < uth [Cxlloo <
0 \
1 u< u® ¢ x <1la
—1 — |—up —C -
Rate constraints Integral constraints
X — Xit1lloo < @ Ixlh <«
3 \
I =l X x € conv (eiax)
<
[’ / } <Xf+1> < le

Polytopes in MPC are commonly described as a set of inequalities.
This is a standing assumption in the following.

1 is a vector of all ones
e is the it elementary vector (O, ..., 0,1,0,..., 0), with the 1 in the it position
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MultiParametric Toolbox (MPT)

http://control.ee.ethz.ch/ mpt/
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http://control.ee.ethz.ch/~mpt/

Creating polytopes in MPT

Polytope in inequality form Polytope in vertex form

Define P = {x | Fx < f }: Define P = conv (v;)

P = Polyhedron(F, f£f); P = Polyhedron([v0 vl .. vnl'");
P.plot P.plot

Obtaining the vertices / inequalities:

F =
vV o=

; £ =P.b; % Inequalities
; % Vertices
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Computing Invariant Sets

Conceptual Algorithm to Compute Invariant Set

Qo +— X
loop
Q/+1 — pI’E(Q,') N Q;
if Q;11 =, then
return O, = Q;
end if
end loop

Requirements:

o Represent set ; (Polytopes)
¢ Intersection
e Pre-set computation

o Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Intersection of Polytopes
Intersection
The intersection | CR" of sets SCR"and T CR" is

I=SNT ={x|xeSandxe T}

Intersection of polytopes in inequality form is easy:

S={x|Cx<c}

SAT=
T.—{x|Dx<d} {X

Intersection of polytopes in vertex form is difficult (exponential complexity)
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Computing Invariant Sets

Conceptual Algorithm to Compute Invariant Set

Qo +— X
loop
Q/+1 — pI’E(Q,') N Q;
if Q;11 =, then
return O, = Q;
end if
end loop

Requirements:

o Represent set ; (Polytopes)
e Intersection
¢ Pre-set computation

o Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Pre-Set Computation: Autonomous System
Pre Set

Given a set S and the dynamic system x* = Ax, the pre-set of S is the set
of states that evolve into the target set S in one time step:

pre(S) .= {x |Ax e S}

If S:={x|Fx <f}, then pre(S) = {x | FAx < f}

15

1 xT = L1 X+ L u
\ 01 0.5
0.5
-5 5
- <x< <0.

: ; IR EEE M PR
o \ Where u = Kx, with K the optimal LQR
o controller for Q =1, R = 90.
15 -5 0 5

X
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Pre-Set Computation: Controlled System

Consider the system x™ = Ax + Bu under the constraints
uelU:={u|Gu<g}andtheset S:={x|Fx<f}.

pre(S)={x|JuelU, Ax+BueS}
={x|3uelU, FAx+ FBu<f}

{7 ) <[]

This is a projection operation.
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Polytopic Projection

Polytopic Projection

Given a polytope P = {(x,y) € R" x RY | Cx + Dy < b}, find a matrix £ and
vector e, such that the polytope

Pr={x|Ex<e}={x|3y, (x,y) € P}

Computing projections in inequality form is computationally complex.
If C e R™" and E € RY*", then:
e g can be an exponential function of m (worst case)

e Standard algorithms take time and space doubly exponential in m and g

o Best algorithm to date is polynomial time in m and linear in g* (My PhD)

We won't go through this algorithm here, but the lecture on explicit MPC will
give you an idea of how it works.

1Requires that P has a special structure, which is a form of general position
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Polytopic Projections in MPT

Several projection algorithms are implemented in MPT.

The best is a function of the dimension, complexity and numerical sensitivity of
the polytope being projected. For the most part, the defaults work well.

% Random polytope in R3

P = Polyhedron(randn (20, 3),
% Dimensions to project onto
dims = 1:2;

% Compute the projection
p = P.projection (dims);

% Plot the result

plot (P+[0;0;1], 'color', 'b")
hold on;

p.plot ('color', r');

ones (20,1))

0.4
0.2
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Computing Invariant Sets

Conceptual Algorithm to Compute Invariant Set

Qo +— X
loop
Q/+1 — pI’E(Q,') N Q;
if Q;11 =, then
return O, = Q;
end if
end loop

Requirements:

o Represent set ; (Polytopes)
e Intersection
e Pre-set computation

o Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Subset Test

Problem: Is P := {x | Cx < ¢} contained in Q := {x |Dx < d}?
The statement is true if P C {x | Dix < d; } for each row D; of D.

15 15
1 1 :
05 05 :
><N ><N E
0 0 R
-05 -05
= -0.5 0 0.5 1 h -05 0 0.5 1
X X
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Subset Test

Define the support function of the set P:

hp(D;) := max Dix
X

st. &x<c
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Subset Test in MPT

P = Polyhedron(randn(10,2), ones(10,1)); % Define two polytopes
Q = Polyhedron(randn(10,2), 0.5xones(10,1));

if P <= Q, fprintf('P is a subset of Q\n');

elseif Q <= P, fprintf('Q is a subset of P\n');

end

if P == Q, fprintf('P is equal to Q\n'); end

21 -05 0 05 1
Xl

Q is a subset of P
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Computing Invariant Sets

Conceptual Algorithm to Compute Invariant Set

Qo +— X
loop
Q/+1 — pI’E(Q,') N Q;
if Q;11 =, then
return O, = Q;
end if
end loop

Requirements:

o Represent set ; (Polytopes)
e Intersection
e Pre-set computation

o Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Outline

5. Summary
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Summary: Invariant Sets
Linear Systems / Polyehedral Constraints

e Polyhedral invariant set

— Can represent the maximum invariant set
— Can be complex (many inequalities) for more than ~ 5 — 10 states
— Resulting MPC optimization will be a quadratic program

¢ Ellipsoidal invariant set

— Smaller than polyhedral (not the maximal invariant set)

— Easy to compute for large dimensions

— Fixed complexity

— Resulting MPC optimization will be a quadratically constrained
quadratic program

(See extra notes at end of lecture to learn more about ellipsoidal invariant sets)
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Summary: Control Invariant Sets
Linear system, polyhedral constraints.

e Very difficult to compute
o Very complex
e Very useful
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Summary: Control Invariant Sets
Linear system, polyhedral constraints.

e Very difficult to compute
o Very complex
e Very useful

Next week:
Turn an invariant set into a control invariant set with tractable computation
(This is what MPC does)
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Outline

6. Summary of Exercise Session
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Exercise Session #3

Tasks:

1. Compute maximal invariant sets

2. Compute maximal control invariant sets

(You may find the next two slides useful!)
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Installing MPT3

1. Goto http://control.ee.ethz.ch/ mpt/3/Main/Installation

2. Download and run install_mpt3.m
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http://control.ee.ethz.ch/~mpt/3/Main/Installation
install_mpt3.m

Summary: Operations in MPT
Define the polytopes:

P:={x|Cx<c} Q={x|Dx<d}

Intersection

‘ S = Polyhedron([C;D], [c;d]l); % S is the intersection of P and Q

Subset / equality test

P <= Q % True if P is a subset of Q
Q <= P % True if Q is a subset of P
P == Q % True is P equals Q
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Pre-Sets

Autonomous system

xT = Ax Si={x|Fx<fr} pre(S) = {x | FAx < f}

preS = Polyhedron(FxA, f); % preS is the pre—set of S

Controlled system

xT = Ax + Bu S:={x|Fx<f} U:={u|Gu<g}

we(s) = {x |2 |7 G (3) <o)}

$ Matrix A is n x n and the matrix G is g x m
preS = projection (Polyhedron ([F*A F«*B;zeros(q,n) Gl, [f;g]l), [1l:n]);
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Outline

7. Ellipsoids and Invariance (Not on Exam, but may be useful to you)

Introduction to Constrained Systems 4-83 Model Predictive Control ME-425



Ellipsoids
Ellipse

Let P > 0 by a symmetric and positive-definite matrix in R™" and x. € R".
The set

E={x|(x—x)"P(x=x) <1}

is an ellipse.

Ellipsoids are useful because the complexity of evaluating containment is always
quadratic in the dimension, whereas polyhedra can be arbitrarily complex.
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Invariant Sets from Lyapunov Functions

Lemma: Invariant set from Lyapunov function

If V:R" — R is a Lyapunov function for the system x* = f(x), then
Y ={x|VX) <a}

is an invariant set for all a > 0.

We have the basic properties:
o V(x) >0 for all x
o V(f(x))—V(x)<0

The second property implies that once V(x;) < a, V(x;) will be less than «a for
all j > i. O

We often want the largest invariant set contained in our constraints.

If V is a Lyapunov function for the system x™ = f(x), and our constraints are
given by the set X, then we maximize o such that

Ya={x|V(X)<a}CX
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Invariant Sets from Lyapunov Functions
Consider the system xT = Ax, and assume P = 0 satisfies the condition
ATPA—P <0

Then the function V(x) = x” Px is a Lyapunov function.

Our goal is to find the largest a such that the invariant set Y, is contained in
the system constraints X:

Yor={x|x"Px<a’} cX:={x|Fx<f}
Equivalently, we want to solve the problem:

maXx &
a

s.t. hy (F) <fiforallie{l,..., n}
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Maximum Ellipsoidal Invariant Sets
Support of an ellipse:
hy, () = max v x
st. x'Px < a?
Change of variables y := P1/2x
hy, () = max 4T P2y
st.yTy <o?

which can be solved by inspection:

L1 PPy _
hy, () = TP 12 [P~ 172]| a=|P 1/2’)’||0l
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Maximum Ellipsoidal Invariant Sets

Largest ellipse in a polytope is now a one-dimensional optimization problem:

o =max a st |PY2FT|a<fiforallice{l,... n}
a

. fi
T ey [PI2ET

2 2
1 1
d o A dPo e
~ ~
x x
-1 -1
ol ol
3 -1 0 1 2 3 -1 0 1 2
Xl >(l

It is possible to optimize over P, maximizing the volume of the ellipse, subject
to stability and containment constraints (convex semi-definite program)
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Doing Better than the LQR Lyapunov Function

The function V(x) = xT Px is only one of many possible Lyapunov functions
for the system x* = (A+ BK)x. Can we find one that will give a larger ellipse?

The function V(x) = xT Px is a Lyapunov function for the system
xt = (A+ BK)x if it satisfies the Lyapunov equation

ATPA—P=-Q
for some Q = 0. This condition is equivalent to the convex constraint on P:
ATPA-P =<0

where < means ‘negative definite’.

Note that this is equivalent to the condition
ATPIA-—P1 =<0

(multiply left and right by P~1)
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Doing Better than the LQR Lyapunov Function

We can now pose a convex optimization problem, which returns the largest
invariant ellipse within a polytope X = {x | Fx < f } (where we define
P.=p1

max flogdetﬁ
P
st. ATPA-—P =<0
FPFT <f? forali=1...n

Notes:
e The volume of an ellipse is log det P~1

o |PY2ETI2 = FPLFT
The largest volume ellipse centered at zero within the polytope X is then

5:{X|XTﬁ>71X§l}CX
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Example Revisited

2 2
1 1
- ~
-1 -1
Sl |
K a1 0 1 2 E 1 0 1 2
Xl Xl
Maximum volume ellipse using the Maximum volume ellipse resulting from
matrix P from LQR. any quadratic Lyapunov function.
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