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Recap: Introduction to Convex Optimization

min f (z)

s.t. g(z) ≤ 0

Cz = b

where C ∈ Rp×n and g : Rn → Rm.

Main point: Easy to solve if f , g convex and twice differentiable.

MPC problems with these properties are common:

• Linear dynamics

• Convex cost and constraints (e.g., quadratic, linear, sum of norms, etc)
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Interior-point methods

• Solve linear system to compute search direction, take step, repeat:

(∇2f (z) + κ∇2φ(z))∆znt = −∇f (z)− κ∇φ(z)

• General form of linear system more complex, but same idea

• Generally have to iterate about 10− 30 times

• Computation time determined by how long it takes to solve linear equation
A *lot* faster if structure of problem is exploited to speed solution
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MPC can be used for Fast Systems

Time per iteration for MPC problem on desktop PC.
Total time will be ∼ 10× slower.
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Outline

1. Objectives of Constrained Control

2. Invariance

3. Controlled Invariance
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5. Summary

6. Summary of Exercise Session

7. Ellipsoids and Invariance (Not on Exam, but may be useful to you)
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Constrained Control

x+ = f (x , u) (x , u) ∈ X,U

Design control law u = κ(x) such that the system:

1. Satifies constraints : {xi} ⊂ X, {ui} ⊂ U
2. Is stable: limi→∞ xi = 0

3. Optimizes “performance”

4. Maximizes the set {x0 |Conditions 1-3 are met}

This lecture is about how to ensure #1

(Remaining lectures cover 2-4)
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Limitations of Linear Controllers
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Constraints:

X := {x | ‖x‖∞ ≤ 5}
U := {u | ‖u‖∞ ≤ 1}

Consider an LQR controller,
with Q = I , R = 1.

Does linear control work?

Yes, but the region where it works is very small

Use nonlinear control (MPC) to increase the region of attraction
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Lecture Take Homes

Two concepts this lecture:
• Invariance

Region in which an autonomous system will satisfy the constraints for
all time

• Controlled invariance
Region for which there exists a controller so that the system satisfies
the constraints for all time

And some practical computation:
• How to compute these for some important problems
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Invariance: Which states are “good”?

The initial state is in the constraints. Is the next one?

Yup, next one? Yup... Yup... Uh oh
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where ω = 10, ζ = 0.01,
sampled at 10Hz.
Constraints:

X :=



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x

∣∣∣∣∣∣∣

−5 ≤ x1 ≤ 1

−1 ≤ x2 ≤ 1

−5 ≤ x1 + x2 ≤ 1





Look an infinite distance into the future to determine if the trajectory
beginning at the current state always remains in the constraints.
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Controlled Invariance: Does a good input exist?

The initial state is in the constraints. Can we choose the next one to be?
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[
1 2
3 4

]
u

Constraints:

‖u‖∞ ≤ 0.1

‖x‖∞ ≤ 1

‖
[
1 1

]
x‖∞ ≤ 1

We can choose from a set of inputs ⇒ Set of possible next states

Controlled invariance: Will there always exist a valid input that will maintain
constraints?
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Invariance
Constraint satisfaction, for an autonomous system x+ = f (x), or closed-loop
system x+ = f (x , κ(x)) for a given controller κ.
Positive Invariant set

A set O is said to be a positive invariant set for the autonomous system
xi+1 = f (xi ) if

xi ∈ O ⇒ xi ∈ O , ∀i ∈ {0, 1, . . . }

The invariant set provides a set of initial states from which the trajectory will
never violate the system constraints.

Maximal Positive Invariant Set O∞
The set O∞ ⊂ X is the maximal invariant set with respect to X if 0 ∈ O∞,
O∞ is invariant and O∞ contains all invariant sets that contain the origin.

The maximal invariant set is the set of all states for which the system will
remain feasible if it starts in O∞.
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Pre-Sets
Pre Set

Given a set S and the dynamic system x+ = f (x), the pre-set of S is the set
of states that evolve into the target set S in one time step:

pre(S) := {x | f (x) ∈ S }
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Pre-Set Example : Pendulum
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Pendulum:

x+ = x +

[
x2

−9.8 sin x1 − x2

]

(Discretized with forward Euler
at 1Hz)

Target set:

T := {x | ‖x‖2 ≤ 1}

Which states will be in the target set at the next point in time?

Consider the phase diagram.

Pre-set is those states that will be in T in one time-step

Extremely difficult to compute, except in special cases (next lecture).
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Invariant Set Conditions
Theorem: Geometric condition for invariance

A set O is a positive invariant set if and only if

O ⊆ pre(O)

We prove the contrapositive for both the necessary and sufficient conditions.

Necessary If O * pre(O), then ∃x̄ ∈ O such that x̄ /∈ pre(O). From the
definition of pre(O), f (x̄) /∈ O and thus O is not a positive
invariant set.

Sufficient If O is not a positive invariant set, then ∃x̄ ∈ O such that
f (x̄) /∈ O. This implies that x̄ ∈ O and x̄ /∈ pre(O) and thus
O * pre(O).

Note that O ⊆ pre(O)⇔ pre(O) ∩ O = O

Introduction to Constrained Systems 4–28 Model Predictive Control ME-425



Computing Invariant Sets
Conceptual Algorithm to Compute Invariant Set

Input: f , X
Output: O∞

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

The algorithm generates the set sequence {Ωi} satisfying Ωi+1 ⊆ Ωi for all
i ∈ N and it terminates when Ωi+1 = Ωi so that Ωi is the maximal positive
invariant set O∞ for x+ = f (x).
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Computing Invariant Sets
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Where u = Kx , with K the optimal LQR controller for Q = I , R = 90.
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Computing Invariant Sets
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Input: f , X
Output: O∞

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

System:

x+ =

[
1 1
0 1

]
x +

[
1
0.5

]
u

[
−5
−10

]
≤ x ≤

[
5
10

]
−0.1 ≤ u ≤ 0.1

Where u = Kx , with K the optimal LQR controller for Q = I , R = 90.
Introduction to Constrained Systems 4–39 Model Predictive Control ME-425



Outline

1. Objectives of Constrained Control

2. Invariance

3. Controlled Invariance

4. Polytopes and Polytopic Computation

5. Summary

6. Summary of Exercise Session

7. Ellipsoids and Invariance (Not on Exam, but may be useful to you)

Introduction to Constrained Systems 4–40 Model Predictive Control ME-425



Controlled Invariance
Control Invariant Set

A set C ⊆ X is said to be a control invariant set if

xi ∈ C ⇒ ∃ui ∈ U such that f (xi , ui ) ∈ C for all i ∈ N+

Defines the states for which there exists a controller that will satisfy
constraints for all time.

Maximal Control Invariant Set C∞
The set C∞ is said to be the maximal control invariant set for the system
x+ = f (x , u) subject to the constraints (x , u) ∈ X×U if it is control invariant
and contains all control invariant sets contained in X.
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Conceptual Calculation of Control Invariant Sets

Concept of a pre-set extends to systems with exogenous inputs

pre(S) := {x | ∃u ∈ U s.t. f (x , u) ∈ S }

The same geometric condition holds for control invariant sets
A set C is a control invariant set if and only if C ⊆ pre(C)

As a result, the same conceptual algorithm can be used:
Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return C∞ = Ωi

end if
end loop

However, it is now much harder to compute the pre-set!
(Will go through details for linear systems / constraints in next lecture)
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Computing Control Invariant Sets

−10 −5 0 5 10
−10

−5

0

5

10

x
1

x 2

System:

x+ =

[
1 1
0 1

]
x +

[
1
0.5

]
u

Constraints:

‖x‖∞ ≤ 5

‖u‖∞ ≤ 1

An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute

The maximum control invariant set is the best any controller can do
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Computing Control Invariant Sets
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Algorithm:

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return C∞ = Ωi

end if
end loop

An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute

The maximum control invariant set is the best any controller can do
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Computing Control Invariant Sets
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Algorithm:

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return C∞ = Ωi

end if
end loop

An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute

The maximum control invariant set is the best any controller can do
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Computing Control Invariant Sets
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Algorithm:

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return C∞ = Ωi

end if
end loop

An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute

The maximum control invariant set is the best any controller can do
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Computing Control Invariant Sets
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Algorithm:

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return C∞ = Ωi

end if
end loop

An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute

The maximum control invariant set is the best any controller can do
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Computing Control Invariant Sets
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Algorithm:

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return C∞ = Ωi

end if
end loop

An entire set of states can map into each point

The pre-set is a lot larger, but much more difficult to compute

The maximum control invariant set is the best any controller can do
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Control Invariant Set ⇒ Control Law
Let C be a control invariant set for the system x+ = f (x , u).

A control law κ(x) will guarantee that the system x+ = f (x , κ(x)) will satisfy
the constraints for all time if:

f (x , κ(x)) ∈ C for all x ∈ C

We can use this fact to synthesize a control law from a control invariant set
by solving an optimization problem:

κ(x) := argmin {g(x , u) | f (x , u) ∈ C }

where g is any function (including g(x , u) = 0).

This doesn’t ensure that the system will converge, but it will satisfy
constraints.
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Relation to MPC

• A control invariant set is a powerful object

• If one can compute one, it provides a direct method for synthesizing a
control law that will satisfy constraints

• The maximal control invariant set is the best any controller can do!!!

So why don’t we always compute them!?

We can’t...

• Constrained linear systems : Often too complex

• (Constrained) nonlinear system : (Almost) always too complex

What is MPC?

• A method of implicitly describing a control invariant set such that it’s easy
to represent and compute!
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Relation to MPC

• A control invariant set is a powerful object

• If one can compute one, it provides a direct method for synthesizing a
control law that will satisfy constraints

• The maximal control invariant set is the best any controller can do!!!

So why don’t we always compute them!?

We can’t...

• Constrained linear systems : Often too complex

• (Constrained) nonlinear system : (Almost) always too complex

What is MPC?

• A method of implicitly describing a control invariant set such that it’s easy
to represent and compute!
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Computing Invariant Sets
Conceptual Algorithm to Compute Invariant Set

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

Requirements:

• Represent set Ωi (Polytopes)

• Intersection

• Pre-set computation

• Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Polyhedra
Polyhedron

A polyhedron is the intersection of a finite number of halfspaces.

P :=
{
x
∣∣ aT

i x ≤ bi , i = 1, . . . , n
}

A polytope is a bounded polyhedron.

Often written as P := {x |Ax ≤ b}, for matrix A ∈ Rm×n and b ∈ Rm, where
the inequality is understood row-wise.

Polyhedra

P

ak

examples

• nonnegative orthant Rn
+ = {x ∈ Rn | x " 0}

• k-simplex Co{x0, . . . , xk} with x0, . . . , xk affinely
independent, i.e.,

Rank

([
x0 x1 · · · xk

1 1 · · · 1

])
= k + 1,

or equivalently, x1 − x0, . . . , xk − x0 lin. indep.

• probability simplex {x ∈ Rn | x " 0,
∑

i xi = 1}

Convex sets 2–11
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Convex hull
Convex hull

For any subset S of Rd , the convex hull conv (S) of S is the intersection of all
convex sets containing S . Since the intersection of two convex sets is convex,
it is the smallest convex set containing S .

Proposition: Convex hull

The convex hull of a set S ⊆ Rd is
Given a set of points {v1, . . . , vk} in Rd , their convex hull is

conv ({v1, . . . , vk}) :=

{
x

∣∣∣∣∣ x =
∑

i

λivi , λi ≥ 0,
∑

i

λi = 1 ∀i = 1, . . . , k

}
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Examples of convex hulls

2D convex hull 3D convex hull
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Polytopes: Representations
Theorem: Minkowski-Weyl Theorem

For P ⊆ Rd , the following statements are equivalent:

• P is a polytope, i.e., P is bounded and there exist A ∈ Rm×d and b ∈ Rm

such that P = {x |Ax ≤ b}
• P is finitely generated, i.e., there exist a finite set of vectors {vi} such
that P = conv ({v1, . . . , vs})

P = {x |Ax ≤ b}

=

P = conv ({v1, . . . , vs})
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Most Common Polytopic Constraints

x+ = Ax + Bu y = Cx

Suppose we have the following input and output constraints:

ulow ≤ u ≤ uhigh

ylow ≤ y ≤ yhigh

Recalling that y = Cx , this is equivalent to:



0 −I
0 I

−C 0
C 0



(

x
u

)
≤




−ulow

uhigh

−ylow

yhigh



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Polytopes in MPC
Input saturation

ulb ≤ u ≤ uub

⇓
[
1
−1

]
u ≤

[
uub

−ulb

]

Rate constraints

‖xi − xi+1‖∞ ≤ α
⇓

[
I −I
−I I

](
xi

xi+1

)
≤ 1α

Magnitude constraints

‖Cx‖∞ ≤ α
⇓

[
C
−C

]
x ≤ 1α

Integral constraints

‖x‖1 ≤ α
⇓

x ∈ conv (eiα)

Polytopes in MPC are commonly described as a set of inequalities.
This is a standing assumption in the following.

1 is a vector of all ones
ei is the i th elementary vector (0, . . . , 0, 1, 0, . . . , 0), with the 1 in the i th position
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MultiParametric Toolbox (MPT)

Modeling! Optimal control!

Computational !
geometry!

Analysis!

http://control.ee.ethz.ch/~mpt/
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Creating polytopes in MPT
Polytope in inequality form

Define P = {x |Fx ≤ f }:

P = Polyhedron(F, f);

P.plot

Polytope in vertex form

Define P = conv (vi )

P = Polyhedron([v0 v1 .. vn]');

P.plot

Obtaining the vertices / inequalities:

F = P.A; f = P.b; % Inequalities
V = P.V; % Vertices
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Computing Invariant Sets
Conceptual Algorithm to Compute Invariant Set

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

Requirements:

• Represent set Ωi (Polytopes)

• Intersection
• Pre-set computation

• Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Intersection of Polytopes
Intersection

The intersection I ⊆ Rn of sets S ⊆ Rn and T ⊆ Rn is

I = S ∩ T := {x | x ∈ S and x ∈ T }

Intersection of polytopes in inequality form is easy:

S := {x |Cx ≤ c }
T := {x |Dx ≤ d }

S ∩ T =

{
x
∣∣∣∣
[
C
D

]
x ≤

[
c
d

]}

∩ =

Intersection of polytopes in vertex form is difficult (exponential complexity)
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Computing Invariant Sets
Conceptual Algorithm to Compute Invariant Set

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

Requirements:

• Represent set Ωi (Polytopes)

• Intersection

• Pre-set computation
• Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.

Introduction to Constrained Systems 4–64 Model Predictive Control ME-425



Pre-Set Computation: Autonomous System
Pre Set

Given a set S and the dynamic system x+ = Ax , the pre-set of S is the set
of states that evolve into the target set S in one time step:

pre(S) := {x |Ax ∈ S }

If S := {x |Fx ≤ f }, then pre(S) = {x |FAx ≤ f }
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) x+ =
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0 1

]
x +

[
1
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]
u

[
−5
−10

]
≤ x ≤

[
5
10

]
, ‖u‖∞ ≤ 0.1

Where u = Kx , with K the optimal LQR
controller for Q = I , R = 90.
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Pre-Set Computation: Controlled System

Consider the system x+ = Ax + Bu under the constraints
u ∈ U := {u |Gu ≤ g } and the set S := {x |Fx ≤ f }.

pre(S) = {x | ∃u ∈ U, Ax + Bu ∈ S }
= {x | ∃u ∈ U, FAx + FBu ≤ f }

=

{
x
∣∣∣∣∃u,

[
FA FB
0 G

](
x
u

)
≤
[
f
g

]}

This is a projection operation.

Introduction to Constrained Systems 4–66 Model Predictive Control ME-425



Polytopic Projection
Polytopic Projection

Given a polytope P =
{

(x , y) ∈ Rn × Rd |Cx + Dy ≤ b
}
, find a matrix E and

vector e, such that the polytope

Pπ = {x |Ex ≤ e } = {x | ∃y , (x , y) ∈ P }

Computing projections in inequality form is computationally complex.

If C ∈ Rm×n, and E ∈ Rq×n, then:

• q can be an exponential function of m (worst case)

• Standard algorithms take time and space doubly exponential in m and q

• Best algorithm to date is polynomial time in m and linear in q1 (My PhD)

We won’t go through this algorithm here, but the lecture on explicit MPC will
give you an idea of how it works.

1Requires that P has a special structure, which is a form of general position
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Polytopic Projections in MPT

Several projection algorithms are implemented in MPT.

The best is a function of the dimension, complexity and numerical sensitivity of
the polytope being projected. For the most part, the defaults work well.

% Random polytope in R3
P = Polyhedron(randn(20,3), ones(20,1))

% Dimensions to project onto
dims = 1:2;

% Compute the projection
p = P.projection(dims);

% Plot the result
plot(P+[0;0;1],'color','b')
hold on;
p.plot('color', r');
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Computing Invariant Sets
Conceptual Algorithm to Compute Invariant Set

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

Requirements:

• Represent set Ωi (Polytopes)

• Intersection

• Pre-set computation

• Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Subset Test
Problem: Is P := {x |Cx ≤ c } contained in Q := {x |Dx ≤ d }?

The statement is true if P ⊂ {x |Dix ≤ di } for each row Di of D.
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Subset Test
Define the support function of the set P:

hP(Di ) := max
x

Dix

s.t. Cx ≤ c
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Subset Test in MPT
P = Polyhedron(randn(10,2), ones(10,1)); % Define two polytopes
Q = Polyhedron(randn(10,2), 0.5*ones(10,1));

if P <= Q, fprintf('P is a subset of Q\n');
elseif Q <= P, fprintf('Q is a subset of P\n');
end

if P == Q, fprintf('P is equal to Q\n'); end
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Computing Invariant Sets
Conceptual Algorithm to Compute Invariant Set

Ω0 ← X
loop

Ωi+1 ← pre(Ωi ) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

Requirements:

• Represent set Ωi (Polytopes)

• Intersection

• Pre-set computation

• Equality test (bi-directional subset)

This part of the lecture will go through these operations for polytopes.
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Summary: Invariant Sets

Linear Systems / Polyehedral Constraints

• Polyhedral invariant set
Can represent the maximum invariant set
Can be complex (many inequalities) for more than ∼ 5− 10 states
Resulting MPC optimization will be a quadratic program

• Ellipsoidal invariant set
Smaller than polyhedral (not the maximal invariant set)
Easy to compute for large dimensions
Fixed complexity
Resulting MPC optimization will be a quadratically constrained
quadratic program

(See extra notes at end of lecture to learn more about ellipsoidal invariant sets)
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Summary: Control Invariant Sets

Linear system, polyhedral constraints.

• Very difficult to compute

• Very complex

• Very useful

Next week:
Turn an invariant set into a control invariant set with tractable computation
(This is what MPC does)
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Exercise Session #3

Tasks:

1. Compute maximal invariant sets

2. Compute maximal control invariant sets

(You may find the next two slides useful!)
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Installing MPT3

1. Goto http://control.ee.ethz.ch/~mpt/3/Main/Installation

2. Download and run install_mpt3.m
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Summary: Operations in MPT

Define the polytopes:

P := {x |Cx ≤ c } Q := {x |Dx ≤ d }

Intersection

S = Polyhedron([C;D], [c;d]); % S is the intersection of P and Q

Subset / equality test

P <= Q % True if P is a subset of Q
Q <= P % True if Q is a subset of P
P == Q % True is P equals Q
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Pre-Sets
Autonomous system

x+ = Ax S := {x |Fx ≤ f } pre(S) = {x |FAx ≤ f }

preS = Polyhedron(F*A, f); % preS is the pre−set of S

Controlled system

x+ = Ax + Bu S := {x |Fx ≤ f } U := {u |Gu ≤ g }

pre(S) =

{
x
∣∣∣∣ ∃u,

[
FA FB
0 G

](
x
u

)
≤
[
f
g

]}

% Matrix A is n x n and the matrix G is q x m
preS = projection(Polyhedron([F*A F*B;zeros(q,n) G], [f;g]), [1:n]);

Introduction to Constrained Systems 4–82 Model Predictive Control ME-425



Outline

1. Objectives of Constrained Control

2. Invariance

3. Controlled Invariance

4. Polytopes and Polytopic Computation

5. Summary

6. Summary of Exercise Session

7. Ellipsoids and Invariance (Not on Exam, but may be useful to you)

Introduction to Constrained Systems 4–83 Model Predictive Control ME-425



Ellipsoids
Ellipse

Let P � 0 by a symmetric and positive-definite matrix in Rn×n and xc ∈ Rn.
The set

E :=
{
x
∣∣ (x − xc)TP(x − xc) ≤ 1

}

is an ellipse.

Ellipsoids are useful because the complexity of evaluating containment is always
quadratic in the dimension, whereas polyhedra can be arbitrarily complex.
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Invariant Sets from Lyapunov Functions
Lemma: Invariant set from Lyapunov function

If V : Rn → R is a Lyapunov function for the system x+ = f (x), then

Y := {x |V (x) ≤ α}

is an invariant set for all α ≥ 0.

We have the basic properties:

• V (x) ≥ 0 for all x
• V (f (x))− V (x) < 0

The second property implies that once V (xi ) ≤ α, V (xj) will be less than α for
all j ≥ i .

We often want the largest invariant set contained in our constraints.

If V is a Lyapunov function for the system x+ = f (x), and our constraints are
given by the set X, then we maximize α such that

Yα := {x |V (x) ≤ α} ⊆ X
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Invariant Sets from Lyapunov Functions

Consider the system x+ = Ax , and assume P � 0 satisfies the condition

ATPA− P ≺ 0

Then the function V (x) = xTPx is a Lyapunov function.

Our goal is to find the largest α such that the invariant set Yα is contained in
the system constraints X:

Yα :=
{
x
∣∣ xTPx ≤ α2} ⊂ X := {x |Fx ≤ f }

Equivalently, we want to solve the problem:

max
α

α

s.t. hYα(Fi ) ≤ fi for all i ∈ {1, . . . , n}
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Maximum Ellipsoidal Invariant Sets

Support of an ellipse:

hYα(γ) = max
x

γT x

s.t. xTPx ≤ α2

Change of variables y := P1/2x

hYα(γ) = max
x

γTP−1/2y

s.t. yT y ≤ α2

which can be solved by inspection:

hYα(γ) = γTP−1/2
P−1/2γ
‖P−1/2γ‖

α = ‖P−1/2γ‖α
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Maximum Ellipsoidal Invariant Sets

Largest ellipse in a polytope is now a one-dimensional optimization problem:

α? = max
α

α s.t. ‖P−1/2FT
i ‖α ≤ fi for all i ∈ {1, . . . , n}

= min
i∈{1,...,n}

fi
‖P−1/2FT

i ‖
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It is possible to optimize over P, maximizing the volume of the ellipse, subject
to stability and containment constraints (convex semi-definite program)
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Doing Better than the LQR Lyapunov Function

The function V (x) = xTPx is only one of many possible Lyapunov functions
for the system x+ = (A + BK )x . Can we find one that will give a larger ellipse?

The function V (x) = xTPx is a Lyapunov function for the system
x+ = (A + BK )x if it satisfies the Lyapunov equation

ATPA− P = −Q

for some Q � 0. This condition is equivalent to the convex constraint on P:

ATPA− P � 0

where � means ‘negative definite’.

Note that this is equivalent to the condition

ATP−1A− P−1 � 0

(multiply left and right by P−1)
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Doing Better than the LQR Lyapunov Function

We can now pose a convex optimization problem, which returns the largest
invariant ellipse within a polytope X = {x |Fx ≤ f } (where we define
P̃ := P−1)

max
P̃
− log det P̃

s.t. AT P̃A− P̃ � 0

Fi P̃FT
i ≤ f 2i for alli = 1 . . . n

Notes:
• The volume of an ellipse is log detP−1

• ‖P−1/2FT
i ‖2 = FiP−1FT

i

The largest volume ellipse centered at zero within the polytope X is then

E =
{
x
∣∣ xT P̃−1x ≤ 1

}
⊂ X
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Example Revisited
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Maximum volume ellipse using the
matrix P from LQR.
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Maximum volume ellipse resulting from
any quadratic Lyapunov function.
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